SERIAL INTERFACE MANUAL VIBRATION ANALYZER VA-11/11B/11C

Contents

Outline 1
Connection to a Computer 2
Transfer Principle and Transfer Procedure 3
Commands 7
List of Commands 8
Command Description 10
Output Data Format 23
Sample Program 33

Outline

The VA-11/11B/11C incorporates a serial interface. When a computer is connected via this interface, it can be used to control parameter settings and measurement operation and to receive current measurement data and data stored in the memory of the VA-11/11B/11C.

This manual is divided into four sections covering the following topics.

- Connection to a computer

Here you will find information about connecting the VA-11/11B/11C to the computer. A cross-wired (null modem) cable is required.

- Transfer principle and transfer procedure

This section describes the transfer principle and the procedure for sending commands and data.

- Commands

This section describes the commands that can be sent from a computer to the VA-11/11B/11C. The general format of the commands is shown, followed by a list and a description of the various commands.

- Output Data Format

This section describes the format of data output by the VA-11/11B/11C in response to commands. The data include current measurement data and data stored in the memory.

Connection to a Computer

Connect the I/O connector on the side of the VA-11/11B/11C to the RS-232-C interface connector of the computer, using an interface cable as shown below.

I/O connector on VA-11/11B/11C:
9-pin D-sub male connector (also used for printer connection)

Cable type: commercially available cross-wired (null modem) cable

Interface cable (commercially available)

Transfer Principle and Transfer Procedure

Transfer principle

Protocol:	yes
Baud rate:	$9600,19200,38400 \mathrm{bps}$
Data word length:	8 bit
Stop bits:	2
Parity:	none
CTS, RTS control:	yes
XON, XOFF control:	no

Transfer procedure

In order to control the VA-11/11B/11C from a computer or to retrieve measurement data, prescribed commands must be sent to the unit. The data exchange must be performed according to certain rules, to ensure that both the VA-11/11B/11C and the computer recognize the commands and data properly.

Control codes

Control codes are 1-byte codes that serve to control the sending and receiving of data blocks. The codes listed below are used.
$<\mathrm{CR}>\quad$ Carrier return (control code 0DH)
Moves the cursor to the beginning of a line.
$\begin{aligned}<\text { LF }> & \text { Line feed (control code } 0 \mathrm{AH} \text {) } \\ & \text { Inserts a new line. }\end{aligned}$
$<$ EOT $>$ End of transmission (control code 04H)
Issued by the VA-11/11B/11C when all data blocks of a transmission have been sent. When the computer receives an $<$ EOT $>$ code, it knows that data transmission is completed.
<ACK> Acknowledge (control code 06H)
Issued by the receiving side when a data block was properly received.
$<$ NAK $>$ Not Acknowledge (control code 15H)
Issued by the receiving side when a data block was not properly received.

Transfer protocol

The VA-11/11B/11C uses two types of communication protocols, one for setting commands and one for data request commands.

Setting commands
This protocol is used for commands sent from the computer to the VA-11/
11B/11C to change settings or control operation. The VA-11/11B/11C issues only an acknowledgment but no further response data to these commands.

Data request commands
This protocol is used for commands sent from the computer to the VA-11/ $11 \mathrm{~B} / 11 \mathrm{C}$ requesting response data.

Setting command

Data request command

PC

VA-11/11B/11C
Command string $<$ CR $><$ LF $>$
Command not successful (no further data)
Command successful (further data available)

Data block 1 output
\longrightarrow Request next data

Data block content

The VA-11/11B/11C sends out data in blocks of variable length. The maximum length of a block is 256 or 2048 bytes. This is selectable with the BSZ (block size) command.

When the output data length does not exceed one block:
Data 1, data 2, ... data $\mathrm{N}<\mathrm{CR}><$ LF $><$ EOT $>$

When the output data length requires several blocks (M data with length K per block):

Data 1, data 2, ... Data K
Data $\mathrm{K}+1$, data $\mathrm{K}+2$, ... Data 2 K
Data $2 \mathrm{~K}+1$, data $2 \mathrm{~K}+2$, ... Data 3 K

Data $(\mathrm{M}-1) \mathrm{K}+1$, Data $(\mathrm{M}-1) \mathrm{K}+2, \ldots$ Data $(\mathrm{M}-1) \mathrm{K}+\mathrm{N}<\mathrm{CR}><$ LF $><$ EOT $>$

Last block length is $\mathrm{N}(\mathrm{N} \leq \mathrm{K})$

Transfer protocol error

When sending multiple data blocks, after output of one block the VA-11/ $11 \mathrm{~B} / 11 \mathrm{C}$ will wait for an $<\mathrm{ACK}>$ response from the computer for 10 seconds. If no $<\mathrm{ACK}>$ response is received within this period, timeout occurs, the VA-11/11B/11C sends a $<\mathrm{NAK}>$, and transfer is terminated.

Command error

The VA-11/11B/11C checks whether commands sent from the computer conform to the format and parameter range requirements and whether the command can be currently executed. If an error is detected at this stage, the VA$11 / 11 \mathrm{~B} / 11 \mathrm{C}$ returns a $<\mathrm{NAK}>$. The computer can check which type of error has occurred by issuing the EST? command (see page 10).

Commands

Command format

Commands recognized by the VA-11/11B/11C consist of 3 characters (3 bytes) followed by one or more parameters. Command characters use the letters A to Z , and parameters also use numerals 0 to 9 and the question mark.
It is not possible to send several commands together.

$\frac{1}{1}$		$<\mathrm{CR}\rangle$	$<\mathrm{LF}\rangle$
Command body	Parameter	Terminator \longleftrightarrow	

Setting commands use one or several numerals. Status inquiry commands use "?".

In the following explanation, parameters for setting commands are denoted as n1, n2, etc.
The number and range of parameters depends on the command.

- When there are several parameters, they must be separated with spaces. In this documentation, a space (20H) is indicated by an underline "_". <Example>

DTEn1_n2_n3<CR><LF>
MRDn1_n2_? $<$ CR $><$ LF $>$

- A space may also be inserted between the command and the first parameter.
<Example>
DTE_n1_n2_n3<CR><LF>

List of Commands

Operation status commands

EST Get error status
VER Get program version

Measurement parameter and operation control commands

RNG Set (Get) range
OVL Get overload status
HPF Set (Get) high-pass filter parameter
LPF Set (Get) low-pass filter parameter
AVR Set (Get) averaging processing parameter
AVN Set (Get) averaging count
SRT Start/end measurement (Get current processing status)
PSE Pause/restart measurement (Get current pause/restart status)
TRG Set (Get) trigger type parameters
TRE Set (Get) pre/post trigger parameter
TRL Set (Get) level trigger parameters
TRP Set (Get) trigger position
FSP Set (Get) frequency span parameter
WIN Set (Get) window parameter
GXE Set (Get) X axis zoom parameter
GXS Shift X axis display data (Get X axis display data shift)
GYE Set (Get) Y axis zoom parameter
GYS Shift display data by $10 \times \mathrm{n} 1[\mathrm{~dB}]$ (Get Y axis display data shift)
GZM Set (Get) zoom ratio
GYL Set (Get) Y scale
GRX Get X axis upper/lower limit
GRY Get Y axis upper/lower limit and unit
CUD Get X axis value and unit, Y axis value and unit at cursor
CPM Set (Get) cursor shift information
CPD Move cursor to reference position
CXU Set (Get) X axis unit for spectrum display
CYU Set (Get) Y axis unit for spectrum display

UNA Set (Get) acceleration unit
UNV Set (Get) velocity unit
UND Set (Get) displacement unit
PKS Set (Get) pickup sensitivity
VYL Set bar graph scale to LIN (linear) scale or LOG scale

RCL Set (Get) operation mode
TIM Set (Get) time
DTE Set (Get) date
SCS Save (Get) measurement parameters
SCL Load (Get) measurement parameters

Display commands

IMD Set (Get) graph display parameter
PLI Set (Get) level list display (highest 10)
VIB Set (Get) data type

Memory commands

MST Set (Get) store type
MSR Control (Get) memory store
MCT Set (Get) number of store data (for timer store)
MSP Set (Get) store interval
MSA Set (Get) store address
MTM Set (Get) timer store status
MSS Set (Get) timer store start time

Data request commands

BSZ Set (Get) output data block size
DOD Get display data in ASCII format
MRD Get memory data in ASCII format

Command Description

Operation status commands

EST? Get error status
This command obtains the operation status of the VA-11/11B/
11 C in response to a received command.
Response to EST?
0: Normal operation
1: Command name error
2: Parameter error
4: Parameter out of range
8: Command cannot be executed in current state

VER ? Get program version
This command obtains the program version.
Response to VER ?
Numeral from 0.1, in steps of 0.1

Measurement parameter and operation control commands

RNG n1 Set range
RNG ? Get range
Values are as shown in the table below.
n 1 : Number (0 to 5)

n 1	0	1	2	3	4	5		
Acceleration	1	3.16	10	31.6	100	316	$\mathrm{~m} / \mathrm{s}^{2}$	RMS
Velocity	3.16	10	31.6	100	316	1000	$\mathrm{~mm} / \mathrm{s}$	RMS
Displacement	0.089	0.283	0.894	2.83	8.94	28.3	mm	EQp-p
	$\{0.032$	0.1	0.316	1	3.16	10	mm	RMS $\}$

Response to RNG?
Corresponding to n 1
OVL? Get overload statusResponse to OVL?0 : Overload has not occurred1: Overload has occurred
HPF n1 Set high-pass filter parameter HPF ? Get high-pass filter parameter $\mathrm{n} 1=0: 3 \mathrm{~Hz} \quad 1: 10 \mathrm{~Hz} \quad 2: 1 \mathrm{kHz}$
Response to HPF?Corresponding to n 1
LPF n1 Set low-pass filter parameter
LPF ? Get low-pass filter parameter
$\mathrm{n} 1=0: 1 \mathrm{kHz} \quad 1: 5 \mathrm{kHz}$ 2: 20 kHz
Response to LPF?Corresponding to n 1
AVR n1 Set averaging processing parameter
AVR ? Get averaging processing parameter$\mathrm{n} 1=0$: Instantaneous value averaging
1: Linear averaging
2: Exponential averaging
3: Maximum value (peak hold)
Response to AVR ?Corresponding to n 1
AVN n1 Set averaging count
AVN? Get averaging count
n1: Averaging count (1 to 1023)
Response to AVN ?
Corresponding to n 1

SRT n1 Start/end measurement
SRT ? Get current processing status n1 $=0$: End measurement 1 : Start measurement

Response to SRT ?
0: Measurement ended (Linear averaging, peak hold)
1: Measurement in progress
2: Trigger standby

PSE n1 Pause/restart measurement
PSE ? Get current pause/restart status
$\mathrm{n} 1=0$: Pause measurement 1 : Restart measurement
Response to PSE ?
0: Measurement paused
1: Measurement not paused

TRG n1 n2 Set trigger type parameters
TRG? Get trigger type parameters
n1: Mode (0: Free-run 1: Repeat 2: Single)
n2: Source (0: Level trigger 1: External trigger)
Response to TRG?
Corresponding to $\mathrm{n} 1, \mathrm{n} 2$

TRE n1 Set pre/post trigger parameter
TRE? Get pre/post trigger parameter
$\mathrm{n} 1=0$: Turn off pre/post trigger function
$\mathrm{n} 1=1$: Turn on pre-trigger
$\mathrm{n} 1=2$: Turn on post-trigger
Response to TRE?
Corresponding to n 1

TRL n1 n2 Set level trigger parameters
TRL? Get level trigger parameters
Trigger level $(\pm \mathrm{n} 1 / 8)$ Default value $(\mathrm{n} 1=+2)$
n 1 : Trigger level (-7 to +7)
n2: Slope (0: -, 1:+)
Response to TRL?
Corresponding to $\mathrm{n} 1, \mathrm{n} 2$

TRP n1 Set trigger position
TRP ? Get trigger position
n1: Trigger position $(0,16,32,48, \ldots 240)$ Default value $(=0)$
Response to TRP ?
Corresponding to n 1

FSP n1 Set frequency span parameter
FSP ? Get frequency span parameter

$$
\begin{aligned}
\mathrm{n} 1= & 0: 100 \mathrm{~Hz} \\
& 1: 200 \mathrm{~Hz} \\
& 2: 500 \mathrm{~Hz} \\
& 3: 1 \mathrm{kHz} \\
& 4: 2 \mathrm{kHz} \\
& 5: 5 \mathrm{kHz} \\
& 6: 10 \mathrm{kHz} \\
& 7: 20 \mathrm{kHz}
\end{aligned}
$$

Response to FSP ?
Corresponding to n 1

WIN n1 Set window parameter
WIN ? Get window parameter
$\mathrm{n} 1=0$: Rectangular 1: Hanning 2: Flat-top
Response to WIN ?
Corresponding to n 1

GXE n1 Set X axis zoom parameter (possible when zoom ratio (GZM) is set to 2 or higher, see page 15)
GXE ? Get X axis zoom parameter
$\mathrm{n} 1=0: \times 1$
$1: \times 2$
$2: \times 4$
$3: \times 8$

Response to GXE ?
Corresponding to n 1

GXS n1 Shift X axis display data
GXS ? Get X axis display data shift
When X axis zoom is set to $\times 2$ or higher, band data can be shifted towards the left edge of the frame with this command (using left edge 0 as reference).
When X axis zoom is $\times 2: \mathrm{n} 1=$ shift amount (0 to 5)
When X axis zoom is $\times 4: \mathrm{n} 1=$ shift amount (0 to 15)
When X axis zoom is $\times 8: \mathrm{n} 1=$ shift amount (0 to 35)
Response to GXS ?
Corresponding to n 1

GYE n1 Set Y axis zoom parameter
GYE? Get Y axis zoom parameter
When Y axis scale is dB
$\mathrm{n} 1=0: \times 1 \quad 1: \times 2 \quad 2: \times 4$
When Y axis scale is Linear
Zoom ratio $=$ full scale/(2n1) n1: Scale (0 to 10)
Response to GYE?
Corresponding to n 1

GYS n1 Shift display data by $10 \times \mathrm{n} 1[\mathrm{~dB}]$ (related to Y axis $[\mathrm{dB}]$ zoom setting)

GYS ? Get Y axis display data shift
When zoom is $\times 2$: $\mathrm{n} 1=$ shift amount (0 to 4)
When zoom is $\times 4$: $\mathrm{n} 1=$ shift amount (0 to 6)
Response to GYS ?
Corresponding to n 1

GZM n1 Set zoom ratio
GZM ? Get zoom ratio

$$
\mathrm{n} 1=0: \times 1 \quad 1: \times 2 \quad 2: \times 4 \quad 3: \times 8
$$

Response to GZM ?
Corresponding to n 1

GYL n1 Set Y scale
GYL? Get Y scale $\mathrm{n} 1=0: \mathrm{dB} \quad 1$: Linear

Response to GYL?
Corresponding to n 1

GRX ? Get X axis upper/lower limit
Response to GRX ?
$\mathrm{n} 1=\mathrm{X}$ axis upper limit
$\mathrm{n} 2=\mathrm{X}$ axis lower limit

GRY ? Get Y axis upper/lower limit and unit
Response to GRY ?
$\mathrm{n} 1=\mathrm{Y}$ axis upper limit
$\mathrm{n} 2=\mathrm{Y}$ axis lower limit
n3 $=0: G$
1: m/s ${ }^{2}$
2: mm/s
3: inch/s
4: mm
5: mils
6: dB

CUD ? Get X axis value and unit, Y axis value and unit at cursor
Response to CUD ?
$\mathrm{n} 1=\mathrm{X}$ axis value at cursor
$\mathrm{n} 2=\mathrm{X}$ axis unit at cursor (string indicated by cursor on screen)
$\mathrm{n} 3=\mathrm{Y}$ axis value at cursor
$\mathrm{n} 4=\mathrm{Y}$ axis unit at cursor (0 to 6 below)
0: G
1: m/s ${ }^{2}$
2: mm/s
3: inch/s
4: mm
5: mils
6: dB

CPM n1 Set cursor shift information
CPM ? Get cursor shift information

$$
\text { n1 }=0: \text { Right } \quad 1: \text { Left }
$$

Response to CPM ?
Numerical indication of right-direction shift, using left edge as
reference
When display is set to spectrum n 1 : Shift amount (0 to 101)
When display is set to time waveform n : Shift amount (0 to 127)

CPD Move cursor to reference position
Moves the cursor to the left edge of the frame.

CXU n1 Set X axis unit for spectrum display
CXU ? Get X axis unit for spectrum display $\mathrm{n} 1=0: \mathrm{Hz} 1: \mathrm{KCPM} 2:$ ORDER
Response to CXU ?
Corresponding to n 1

CYU n1 Set Y axis unit for spectrum display
CYU ? Get Y axis unit for spectrum display

$$
\mathrm{n} 1=0: \mathrm{dB} \quad 1: \text { Linear }
$$

Response to CYU ?
Corresponding to n 1

UNA n1 Set acceleration unit
UNA ? Get acceleration unit

$$
\mathrm{n} 1=0: \mathrm{m} / \mathrm{s}^{2} \quad 1: \mathrm{G}
$$

Response to UNA ?
Corresponding to n1

UNV n1 Set velocity unit
UNV ? Get velocity unit $\mathrm{nl}=0: \mathrm{mm} / \mathrm{s} \quad 1: \mathrm{inch} / \mathrm{s}$
Response to UNV ?
Corresponding to n1

UND n1 Set displacement unit
UND ? Get displacement unit $\mathrm{n} 1=0: \mathrm{mm} \quad 1: \mathrm{mils}$

Response to UND ?
Corresponding to n1

PKS n1 n2 Set pickup sensitivity
PKS ? Get pickup sensitivity
Pickup sensitivity $=$ numeral \times multiplication factor $\left[\mathrm{mV} / \mathrm{ms}^{-2}\right]$
n1: Numeral (100 to 999) Default value (510×0.01)
n2: Multiplication factor $(0: \times 0.1 \quad 1: \times 0.01 \quad 2: \times 0.001)$
Response to PKS ?
Corresponding to $\mathrm{n} 1, \mathrm{n} 2$

RCL n1 Set operation mode
RCL? Get operation mode
$\mathrm{n} 1=0$: Set measurement mode $\quad 1$: Set recall mode
Response to RCL ?
Corresponding to n 1

TIM n1 n2 Set time
TIM ? Get time
Sets the time for the built-in clock of the VA-11/11B/11C.
n1: Hours (0 to 23 in 24-hour notation)
n2: Minutes (0 to 59)
Response to TIM ?
Corresponding to $\mathrm{n} 1, \mathrm{n} 2$

DTE n1 n2 n3 Set date
DTE ? Get date
Sets the date for the built-in clock of the VA-11/11B/11C.
n1: Day (1 to 31)
n2: Month (1 to 12)
n3: Year (0 to 99, last two digits)
Response to DTE ?
Corresponding to $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3$

SCS n1 Save measurement parameters
SCS ? Get saved measurement parameters
n1: Address (1 to 10)
Response to SCS ?
All saved measurement parameter sets are output, in the order address 1 , address $2, \ldots$ address 10 .

When saved, clock information is output as follows:

YY: last two digits of year
MM: month

DD: day
HH: hours
mm : minutes
When not saved, clock information is output as follows:

- NONE - \qquad
8 spaces -

SCL n1 Load measurement parameters
SCL? Get saved measurement parameters
n1: Address (1 to 10) (0: default state)
Response to SCL?
All saved measurement parameter sets are output, in the order address 1 , address $2, \ldots$ address 10 .
When saved, clock information is output as follows:

When not saved, clock information is output as follows:

- NONE - \qquad
8 spaces -
VYL n1 Set bar graph scale
n1 $=0$: LOG scale
1: LIN (linear) scale

Display commands

IMD n1 Set graph display parameter
IMD ? Get graph display parameter $\mathrm{n} 1=0$: Vibration meter display

1: Spectrum display
2: Time waveform
Response to IMD ?
Corresponding to n 1

PLI n1 Set level list display (highest 10)
PLI ? Get level list display setting
$\mathrm{n} 1=0$: List display off
1: List display on
Response to PLI ?
0 : List display turned off
1: List display turned on

VIB n1 Set data type
VIB ? Get data type
This command serves for setting the data type to be shown on the display.
$\mathrm{n} 1=0:$ Acceleration
1: Velocity
2: Displacement
3: Acceleration envelope
Response to VIB ?
Corresponding to n 1

Memory commands

MST n1 Set store type
MST ? Get store type
$\mathrm{n} 1=0$: Manual store \quad 1: Transient store
Response to MST?
Corresponding to n 1

MSR n1 Control memory store
MSR ? Get memory store status
$\mathrm{n} 1=0$: Stop store $\quad 1$: Start store \quad 2: Clear Memory
Response to MSR ?
0 : Store not activated
1: Store in progress (transient store, timer store)
2: Store standby (timer store)

MCT n1 Set number of store data (for timer store)
MCT ? Get number of store data
n1: Data number (1 to 500)
Response to MCT?
Corresponding to n 1

MSP n1 Set store interval
MSP ? Get store interval
(** [minutes]) in minutes (2 digits)
n1: Minutes (1 to 60)
Response to MSP ?
Corresponding to n 1

MSA n1 Set store address
MSA ? Get store address
Serves to set the address for storing data.
n1: Address (1 to 500)
Response to MSA ?
Corresponding to n 1

MTM n1 Set timer store status
MTM ? Get timer store status
$\mathrm{n} 1=0$: Timer store not activated
1: Timer store activated

MSS n1 n2 Set timer store start time
MSS ? Get timer store start time
n1: Hours (0 to 23 in 24-hour notation)
n2: Minutes (0 to 59)
Response to MSS ?
Corresponding to $\mathrm{n} 1, \mathrm{n} 2$

Data request commands

BSZ n1 Set output data block size
BSZ? Get output data block size
Serves to select the maximum block size for data transfer.
n1: Data size (0: 256 bytes 1: 2048 bytes)
Response to BSZ ?
Corresponding to n 1

DOD ? Get display data in ASCII format
Serves to read the level of the displayed data.
(When spectrum display is activated, the unit depends on the Y axis cursor unit.)

For information on data contents, see page 23.

MRD n1 n2? Get memory data in ASCII format
Serves to read the level of data stored in memory.
n1: Memory address (1 to 500)
n 2 : Number of data to read
(When spectrum display is activated, the unit depends on the Y axis scale.)
For information on data contents, see page 25.

Output Data Format

This section explains the format of the data output by the VA-11/11B/11C in response to the DOD and MRD commands.

Data structure

In the indication of data format, \square signifies a numeral and \square a decimal point. Data are delimited by commas.
(1) Linear type $\pm \square \cdot \square \square \square \mathrm{E} \pm \square$

Mantissa Exponent (mantissa $\times 10^{\wedge}$ exponent)
(2) dB type $\pm \square \square . \square$
(3) Vibration meter mode crest factor $\square \square . \square \square$
(4) Overload indication \square (0: No overload 1: Overload)
(5) Spectrum list frequency $\square \square \square$

Output data in response to DOD ?
Vibration meter
(1), (1), (3), (1), (1), (4) $<$ CR $><$ LF $><$ EOT $>$

Acceleration rms value, peak value, crest factor, velocity, displacement, overload information

Time waveform
(1), (1), ... (1), (4) $<$ CR $><$ LF $><$ EOT $>$

Data 1, data 2, ... data 128, overload information

Note
When zoom is set to $\times 2$ or higher, 128 data are out-
put as screen display data

Spectrum
When Y axis cursor unit is linear
(1), (1), ... (1), (4) $<$ CR $><$ LF $><$ EOT $>$

When Y axis cursor unit is dB
(2), (2), ... (2), (4) $<$ CR $><$ LF $><$ EOT $>$

Data 1, data 2, ... data 102, overload information

Note

When zoom is set to $\times 2$ or higher, 102 data are output as screen display data

Spectrum list
When Y axis cursor unit is linear
"AP", (1), (5), (1), ... (5), (1), (4) $<$ CR $><L F><$ EOT $>$

When Y axis cursor unit is $d B$
"AP", (2), (5), (2), ... (5), (2), (4) $<$ CR $><L F><E O T>$
"AP", level, frequency 1 , level $1, \ldots$, frequency 9 , level 9 , overload information

Output data in response to MRD n1 n2 ?

Data are shown sequentially, starting from memory address $n 1$, to memory address n1 + n2 -1 data n 2 data are output. The data content is as follows. n1: Output start address n2: Number of data

Note

When there are addresses without data in the specified address range, only $<\mathrm{CR}><$ LF $>$ is output.

Data contents at each address

[Position]	Sample data]	[Description]	[Bytes]
0000	$"$ "VA-11"	Keyword	5
0005	$", "$	Comma	1
0006	$" V e r ~ 1.00 " ~$	Version number	8
0014	$", "$	Comma	1
0015	$" 01 "$	File type 1	2
0017	$", "$	Comma	1
0018	$" Y Y Y Y: M M: D D "$	Measurement date	10
0028	$", "$	Comma	1
0029	$" H H: M M "$	Time	5
0034	$", "$	Comma	1
0035	$" M e a s u r e m e n t ~$		255
	parameters"	Measurement parameters ${ }^{2}$	1
0290	$", "$	Comma	Number of measurement data bytes

File type": See section "1. File Type"
Measurement parameters ${ }^{2}$: See section " 2 . Measurement Parameters"
Measurement data ${ }^{3}$: See section " 3 . Measurement Data"

1. File Type

00: Not used
01: Standard memory (manual store)
02: Standard memory (timer measurement)
03: Transient store
2. Measurement Parameters

Common settings for vibration meter and analyzer

Measurement data type
Measurement data type: 0: Acceleration 1: Velocity
2: Displacement 3: Envelope
Acceleration unit: $\quad 0: \mathrm{m} / \mathrm{s}^{2} \quad 1: \mathrm{G}$
Velocity unit: $\quad 0: \mathrm{mm} / \mathrm{s} \quad 1: \mathrm{inch} / \mathrm{s}$
Displacement unit: $\quad 0: \mathrm{mm} \quad 1: \mathrm{mils}$

Analysis mode: 0: Vibration meter 1: Spectrum 2: Time waveform
Input range: 0 : minimum - 5: maximum
Pickup sensitivity: $\quad \mathrm{mV} / \mathrm{ms}^{-2}$ (numeral, multiplication factor)
Numeral: $\quad * * *: 100$ to 999
Multiplication factor:
100: $\times 0.1 \quad 010: \times 0.01 \quad 001: \times 0.001$
High-pass filter: $\quad 0: 3 \mathrm{~Hz} \quad 1: 10 \mathrm{~Hz} \quad 2: 1 \mathrm{kHz}$
Low-pass filter:
$0: 1 \mathrm{kHz} \quad 1: 5 \mathrm{kHz} \quad 2: 20 \mathrm{kHz}$
Timer store
0: OFF 1: ON
Time:
$\mathrm{HH}: \mathrm{MM}$ in 24-hour notation
Store interval
MM in minutes (2 digits)
Store count
***: 001 to 500

Analyzer settings

| Reserved space: | 12 bytes
 Zoom ratio: | $0: \times 1 \quad 1: \times 2 \quad 2: \times 4$ | $3: \times 8$ |
| :--- | :--- | :--- | :--- | :--- |
| Time window: | $0:$ Rectangular $\quad 1:$ Hanning | $2:$ Flat-top | |
| Frequency span: | 0 to $7: 100 \mathrm{~Hz}$ to 20 kHz | | |
| Trigger operation: | $0:$ Free-run $\quad 1:$ Repeat | $2:$ Single | |
| Trigger source: | $0:$ Level trigger $\quad 1:$ External trigger | | |
| Trigger position: | $\pm * * * *: \pm$ four-digit numeral | | |
| Level trigger position: | -7 to $+7:-7 / 8$ to $+7 / 8$ | | |
| Level trigger slope: | $0:-\quad 1:+$ | | |
| Averaging type: | $0:$ Instantaneous value $\quad 1:$ Linear averaging | | |
| | $2:$ Exponential averaging | $3:$ Maximum value | |
| Averaging count | $* * * *: 0001$ to 1023 | | |

Spectrum display conditions
X axis shift count: $\quad * *: 00$ to 35
Y axis scale: $\quad 0: \mathrm{dB} \quad 1$: Linear
Y axis zoom (dB): $\quad 0: \times 1 \quad 1: \times 2 \quad 2: \times 4$
Y axis zoom (Linear): $\quad * *: 00$ to 10
Y axis level shift (dB): $\quad * *: 00$ to 80
Cursor X axis unit: $\quad 0: \mathrm{Hz}$ 1: KCPM 2: ORDER
Cursor Y axis unit: $\quad 0: \mathrm{dB} \quad$ 1: Linear
Top ten peak list display: 0 : OFF $\quad 1: \mathrm{ON}$
Cursor position, from left: $* * *: 000$ to 101
Time waveform display conditions

| X axis zoom: | $0: \times 1 \quad 1: \times 2$ | $2: \times 4$ | $3: \times 8$ |
| :--- | :--- | :--- | :--- | :--- |
| X axis shift count: | $* *: 00$ to 35 | | |
| Y axis zoom: | $* *: 00$ to 10 | | |

Cursor position, from left: $* * *: 000$ to 127

Reserved space:
Reserved space:
Reserved space:
Overload information:
Vibration meter bar graph scale:
Reserved space:

Measurement parameter data example
[Position] [Sample data] [Description] [Bytes]

Common settings for vibration meter and analyzer
0000 " 0 " Measurement data type
0001 "," Comma 1
0002 "0" Acceleration unit 1
$\begin{array}{ll}0003 \\ 0004 & ", " \\ 0005\end{array}$
Comma 1

0005 "," Comma 1
0006 "1" Displacement unit 1
0007 ", " Comma 1
0008 "1" Analysis mode 1

0009	$", "$
0010	$" 3 "$
0011	","

Comma 1
Input range 1
Comma 1
0012 "510.010" Pickup sensitivity 7
0019 "," Comma 1
0020 "0" High-pass filter 1
0021 ", " Comma 1
0022 "2" Low-pass filter 1
0023 "," Comma 1
0024 " 1 " Timer store 1
0025 "," Comma 1
0026 "13:52" Timer store time 5
0031 "," Comma 1
0032 "15" Timer store interval 2
0034 "," Comma 1
0035 "135" Timer store count 3
0038 "," Comma 1
0039 " \quad Reserved space 12
0051 ", "
Comma 1

Analyzer settings
0052 "0" Zoom ratio \quad "، $\quad 1$
0053 ", "

Comma 1
0054 " 1 "
Time window 1
0055 ", "

Comma 1
0056 " "
0057 ", " "
Frequency span 1
Comma 1
Trigger operation 1
0059 ", "
Comma 1
0060 "0"
Trigger source 1
0061 ", " Comma 1
0062 "-0012" Trigger position 5

0067	$", "$
0068	$"-5 "$
0070	$", "$

Comma 1
Level trigger position 2
Comma 1
Level trigger slope 1
0072 "," Comma 1

0073 " 1 " Averaging type 1
0074 ", " Comma 1
0075 "0102"

Averaging count 4
0079 ", "
Comma 1
0080 " 24 "
Spectrum X axis shift count 2
0082 ", " Comma 1
0083 "1" Spectrum Y axis scale 1
0084 ", Comma 1
0085 "2" Spectrum Y axis zoom (dB) 1
0086 ", "

Comma 1
0087 "05" Spectrum Y axis zoom (Linear) 2
0089 ", Comma 1
0090 "24" Spectrum Y axis shift (dB) 2
0092 ", "
0093 "0"
0094 ", "
0095 "0"
Comma 1
Spectrum cursor X axis unit 1
Comma 1
Spectrum cursor Y axis unit 1

0096	", "		Comma	1
0097	"0"		Spectrum list display	1
0098	", "		Comma	1
0099	"025"		Spectrum cursor position	3
0102	", "		Comma	1
0103	" 4 "		Time waveform X axis zoom	1
0104	", "		Comma	1
0105	"17"		Time waveform X axis shift count	2
0107	", "		Comma	1
0108	"09"		Time waveform Y axis zoom	2
0110	", "		Comma	1
0111	"105"		Time waveform cursor position	3
0114	", "		Comma	1
0115	"0"		Reserved space	1
0116	", "		Comma	1
0117	"001"		Reserved space	3
0120	", "		Comma	1
0121	"	"	Reserved space	16
0137	", "		Comma	1
0138	"1"		Overload information	1
0139	", "		Comma	1
0140	"1"		Vibration meter bar graph scale	1
0141	", "		Comma	1
0142	،	"	Overall extra space	114

3. Measurement Data

Vibration meter mode
(1), (1), (3), (1), (1) $<$ CR $><$ LF $><$ EOT $>$

Acceleration rms value, peak value, crest factor, velocity, displacement

Time waveform
(1), (1), ... (1) $<$ CR $><$ LF $><$ EOT $>$

Data 1, data 2, ... data 128

Spectrum
When Y axis unit was linear at store point
(1), (1), ... (1) $<$ CR $><$ LF $><$ EOT $>$

When Y axis unit was dB at store point
(2), (2), ... (2) $<$ CR $><$ LF $><$ EOT $>$

Data 1, data 2, .. data 102

Sample Program

Sample program

This section contains a sample program that uses the MRD command to transfer data from the VA-11/11B/11C to the computer. (When wishing to use the DOD command, the "MRD" part can be replaced by "DOD ?".)

The sample program is written in Visual Basic 4.0 (32 bit). The following tools were used:

- Command Button
- Text Box
- Common Dialog
- MSComm32 (for custom control reference,
$\mathrm{C}: \backslash \mathrm{WINDOWS} \backslash S Y S T E M \backslash M S C O M M 32 . O C X$ is added)

Program contents

First, MSCOMM settings are made. Then the BSZ command is used to select the data block size, and the MRD command is used to obtain memory data which are then written to a file.
Private Sub Command1_Click ()Dim M!, File1\$, Filen1\$, FileT\$, Pausetime\%, Start\&'--------------Communication settings
\qquad
With MSComm1
.CommPort = 1 'Use COM1
.Settings $=$ " $9600, \mathrm{~N}, 8,2 "$ ' 9600 bps , no parity, data word length 8 bits, 2 stop bits
.InBufferSize $=4096 \quad$ 'Buffer size 4096
.InputLen $=0 \quad$ 'Read entire buffer
.RTSEnable $=$ True 'Enable RTS line
.PortOpen $=$ True 'Open port

End With

\qquad
MSComm1.Output $=$ "BSZ1" + Chr\$(13) + Chr\$(10)
'Send command "BSZ 1"
For M = 1 To 300000: Next M 'Wait
File1 $=$ MSComm1.Input \quad 'Receive response (ACK or NAK)
MSComm1.Output = "MRD 13 ?"+ Chr\$(13) + Chr\$(10)
'Send command "MRD 13 ?"
Text1.Text ="Sending data!"
\qquad
Line 1: Pausetime $=3 \quad$ 'Set pause time
Start $=$ Timer 'Set pause start time
Do While Timer < Start + Pausetime
DoEvents 'Hand control to other events
Loop
'--
File1 $=$ MSComm1.Input \quad 'Receive response (measurement data)
FileT = FileT + File1
If $\operatorname{AscB}(\operatorname{Mid}(F i l e 1, \operatorname{Len}($ File 1), 1)) $=4$ Then
‘Check for $\operatorname{EOT}(04 \mathrm{H})$
Text1.Text $=$ "Sending data completed!"
‘-------------File write
CommonDialog1.Filter="TXT file (*.TXT) | *.TXT"
CommonDialog1.filename $=$ " $*$.TXT"
CommonDialog1.ShowOpen
Filen1 = CommonDialog1.filename
Open Filen1 For Output As \#1 'Open file
Print \#1, FileT 'Write file
Close \#1

MsgBox "File write completed!"
End
Else
MSComm1.Output $=$ Chr\$(6) 'Send ACK(06H)
File1 $=" "$
GoTo Line 1
End If
End Sub

